
An extended abstract of this paper appears in Proceedings of the 38th Symposium on Foundations

of Computer Science, IEEE, 1997. This is the full paper.

A Concrete Security Treatment of Symmetric

Encryption: Analysis of the DES Modes of Operation

M. Bellare
�

A. Desai
�

E. Jokipii
�

P. Rogaway
y

August 15, 1997

Abstract

We study notions and schemes for symmetric (ie. private key) encryption in a concrete

security framework.

We give four di�erent notions of security against chosen plaintext attack and analyze the

concrete complexity of reductions among them, providing both upper and lower bounds, and

obtaining tight relations. In this way we classify notions (even though polynomially reducible

to each other) as stronger or weaker in terms of concrete security.

Next we provide concrete security analyses of methods to encrypt using a block cipher,

including the most popular encryption method, CBC. We establish tight bounds (meaning

matching upper bounds and attacks) on the success of adversaries as a function of their resources.

�
Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive,

La Jolla, CA 92093, USA. E-Mail: fmihir; adesai; ejg@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/

fmihir; adesai; ejg. Supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation

Fellowship in Science and Engineering.

y
Dept. of Computer Science, Engineering II Bldg., University of California at Davis, Davis, CA 95616, USA.

E-mail: rogaway@cs.ucdavis.edu. URL: http://wwwcsif.cs.ucdavis.edu/~rogaway. Supported in part by NSF

CAREER Award CCR-9624560.

1

Contents

1 Introduction 3

1.1 Background and Motivation . 3
1.2 Notions of Security . 4
1.3 Reductions Among the Notions . 4
1.4 Security of Encryption Schemes . 5
1.5 More history . 6

2 Notions of Encryption 6

2.1 Syntax of Encryption Schemes . 6
2.2 Four Notions of Security . 7

3 Reductions Among the Notions 9

4 Analysis of Some Symmetric Encryption Schemes 12

4.1 Finite PRFs and PRPs . 12
4.2 The XOR Schemes . 13
4.3 The CBC Scheme . 15

References 17

A Proofs for Reductions Between Notions 18

B Proofs of Security of the Schemes 23

B.1 The XOR Schemes . 23
B.2 The CBC Scheme . 26

2

1 Introduction

An encryption scheme enables Alice to send a message to Bob in such a way that an adversary
Eve does not gain signi�cant information about the message content. This is the classical problem
of cryptography. It is usually considered in one of two settings. In the symmetric (private-key)
one, encryption and decryption are performed under a key shared by the sender and receiver. In
the asymmetric (public-key) setting the sender has some public information and the receiver holds
some corresponding secret information.

In this paper we have two goals. The �rst is to study notions of symmetric encryption in the
framework of concrete security. This means we will look at the concrete complexity of reductions
between di�erent notions. We want to prove both upper and lower bounds. In this way we can
establish tight relations between the notions and can compare notions (even though polynomially
reducible to each other) as stronger or weaker.

The second goal is to provide a concrete security analysis of some speci�c symmetric encryption
schemes. One of the schemes we consider (CBC encryption) is in pervasive use, and yet has never
received any formal analysis (concrete or otherwise) in the tradition of provable security. We want
to remedy this. Once again the goal is to �nd tight bounds on the success probability of an
adversary as a function of the resources she expends. This involves proving both an upper bound
and a matching lower bound.

1.1 Background and Motivation

The pioneering work of Goldwasser and Micali [GM] was the �rst to introduce formal notions of
security for encryption. Speci�cally, they presented two notions of security for asymmetric encryp-
tion, \semantic security" and \polynomial security," and proved them equivalent with respect to
polynomial-time reductions. Micali, Racko� and Sloan [MRS] showed that (appropriate versions
of) these notions were also equivalent to another notion, suggested by Yao [Y]. A uniform complex-
ity treatment of notions of asymmetric encryption is given by Goldreich [Go1]. Some adaptations
of these notions to the symmetric setting are presented by Luby in [L, Chapters 11{12].

Goldwasser and Micali [GM] also speci�ed an asymmetric encryption scheme whose security
(in the senses above) is polynomial-time reducible from quadratic residuosity. Subsequently many
other schemes have emerged (eg. [BG, ACGS, Y, GL, BR1]), based on various hard problems.

Concrete security. The viewpoint in all the works above is that two notions of security are
equivalent if there is a polynomial-time reduction between them; and a scheme is declared provably
secure if there is some polynomial-time reduction from a hard problem to it. These are certainly
basic questions, but we believe that, once the answers are known, it is important to classify notions
and schemes in a more precise way.

To make an analogy, caring only about polynomial-time reducibility in cryptography is a bit
like caring only whether a computational problem is or is not in P. Yet we know there are a lot
of interesting questions (including most of the �eld of algorithms, and much of complexity theory)
centered around getting further information about problems already known to be in P. Such
information helps to better understand the problem and is also essential for practical applications.

Paying attention to the concrete complexity of polynomially-equivalent notions in cryptography
has similar payo�s. In particular, when reductions are not security-preserving it means that one
must use a larger security parameter to be safe, reducing e�ciency. Thus, in the end, one pays for
ine�cient reductions in either assurance or running time.

Our approach for doing concrete security is that of [BKR, BGR], wherein one parameterizes the
resources involved and measures adversarial success by an explicit function on them. The approach

3

is non-asymptotic and applicable to functions with a �nite domain.
We will be concerned not only with proving security by exhibiting concrete bounds, but also

with showing that these bounds are the best possible, which is done by exhibiting matching attacks.
Again we follow works like [BGR, BCK], who did this for certain message authentication schemes.

Though this paper is concerned with concrete security for symmetric encryption, we believe
that, in general, concrete security is one of the major emerging avenues for productive research in
theoretical cryptography.

1.2 Notions of Security

We will consider four notions of security for symmetric encryption and examine the complexity of
reductions between them. The �rst notion, which we call \real-or-random indistinguishability" is
new, and the second, \left-or-right indistinguishability" is a variant of it. The next two notions,
\�nd-then-guess security" and \semantic security" are adaptations of the notions of [GM] to the
symmetric setting.1 Our goal, in all the notions, is to model chosen-plaintext attacks.

As indicated above, our approach to concrete security is via parameterization of the resources
of the adversary A. We distinguish between A's running time, t (by convention, we include in this
the space for A's program); the amount of ciphertext A sees, �; and the number of queries, q, made
by A to an encryption oracle. (To model a chosen-plaintext attack we must give the adversary the
ability to see ciphertexts. In the public key setting she can create them herself given the public key,
but in the symmetric key setting the encryption key is secret so we must modify the model and
provide the adversary with an oracle for the encryption function. The presence of the encryption
oracle is one reason it would be untrue to regard the notion of symmetric encryption as a special
case of asymmetric encryption.) With an eye towards practical applications, it is important to
treat all of these resources separately. (Previous works would neglect q; �, since they are bounded
by t. But as resources they are very di�erent, because, typically, obtaining legitimate ciphertexts is
more problematic than performing local commutation.) We thus get a notion of (t; q; �; �)-security,
meaning the success probability of an adversary is at most � when its resources are as indicated.
Of course how the success probability is measured varies across the four di�erent notions.

1.3 Reductions Among the Notions

We show that real-or-random indistinguishability and left-or-right indistinguishability are equiva-
lent, up to a small constant factor in the reduction. (That is, we have security-preserving reductions
between them.) We also show a security-preserving reduction from these notions to �nd-then-guess
security. However, the reduction from �nd-then-guess security to left-or-right (or real-or-random)
indistinguishability is not security-preserving. However, we show that the reduction we give is
tight; one cannot hope to do better.

We show a security-preserving reduction from semantic security to �nd-then-guess. In the other
direction the complexity of our reduction depends on the time complexity of the \information
function," f (representing the property of the plaintext semantic security is talking about) and
\message-space sampling algorithm." The reduction is good if these complexities are low.

From the above results it is clear that when one wants to prove the security of some encryption
scheme � it is best to give a tight reduction from real-or-random indistinguishability or left-or-right
indistinguishability, since that implies good reductions to the rest. A summary of the reductions
is given in Figure 1.

1
In [GM] the term \polynomial security" is used for the notion analogous to what we call \�nd-then-guess

security."

4

[Def 2]
left−or−right [Def 1]

real−or−random

 find−then−guess
[Def 3]

 semantic
[Def 4]

Th 1

Th 2

Th 3 Th 4

Th 6

Th 7

Th 8

Figure 1: Relating the notions. A solid line from notion A to notion B means that there is

a security-preserving reduction from A to B A broken line indicates that the reduction is not

security-preserving.

Although concrete security has been considered before in the context of scheme analysis [BKR,
BGR, BCK, BR2], this is the �rst work that considers it also for the purpose of relating di�erent
notions of security. That is, this is the �rst time notions are classi�ed as weaker or stronger
according to the complexity of the reductions between them.

Actually these results extend easily to the asymmetric setting. We focus on the symmetric
mainly because that's the domain in which lie the schemes we want to analyze.

1.4 Security of Encryption Schemes

We analyze the security of some classic symmetric encryption schemes. Speci�cally, we look at two
di�erent modes of encryption with a block cipher (eg., DES): CBC (Cipher Block Chaining mode);
and XOR (sometimes called counter mode). For the latter we look at both a probabilistic and a
stateful version.

In these schemes the underlying primitive is a pseudorandom function (PRF) or pseudorandom
permutation (PRP) family F in which a particular function Fa, speci�ed by a key a, maps l-bits
to L-bits for �xed l; L. (For permutations, l = L.) To encrypt a message the applications of Fa are
iterated in some scheme-dependent way. We wish to see how the security of the encryption scheme
depends on the assumed security of the PRF family. We de�ne the concrete security of PRF and
PRP families as in [BKR], via parameterization of the time t0, number of oracle queries q0, and
maximum advantage �0 of the distinguisher. The question then is: assuming F is (t0; q0; �0)-secure
as a PRF family, what are values of t; q; �; � such that the encryption scheme is (t; q; �; �)-secure?
We seek upper and lower bounds. (The latter represent the best known attacks.)

For the stateful XOR scheme we show that the scheme is (t; q; �; �) secure for � = 2�0, � = q0l,
and t di�ering from t0 by only an additive amount, meaning this scheme is about as good a scheme
as one can possibly hope to get. For the probabilistic XOR scheme we show that the scheme is
(t; q; �; �) secure for � = 2�0+ �(q� 1)=(L2l) and � = q0L and t as before. For CBC, the parameter
values are � = 2�0 + (�2 � �l)=(l22l) and � = q0l. In all cases, we show that these results are tight,
up to a constant. We conclude that stateful XOR, based on a �nite PRF, has the best security.

In all the above the security is in the sense of left-or-right indistinguishability. From what we
said before this gives the other three notions with comparable bounds.

5

1.5 More history

We have already mentioned the most important related work, namely [GM]. Here we provide some
more detailed comparisons and histories and also discuss other work.

Since our results imply that the notions we consider are equivalent under polynomial time
reductions, they can be viewed, at one level, as providing the analogue of [GM] for the symmetric
case.

In treating the asymmetric setting, [Go1] says that the symmetric case can be dealt with
similarly. One ingredient missing in this view is that to model chosen-plaintext attack one must, in
the symmetric setting, supply the adversary with some means to encrypt. We extend polynomial
and semantic security by providing the adversary with an encryption oracle.

Stronger notions of asymmetric encryption than those of [GM, MRS] have also appeared, in-
cluding [NY, DDN], but our concern here is restricted to preserving privacy under chosen-plaintext
attack.

Luby [L] de�nes what is essentially �nd-then-guess security for symmetric encryption, and he
mentions encryption using a pseudorandom function whose output length is the number of bits you
wish to encrypt.

Works like [L, GILVZ, HL] pay attention to concrete security to some extent but don't really
go \all the way," in the sense that at some level their notions are still only caring about whether
something is polynomial or not. Also the avor is di�erent from us in that their concern is more the
security you can get for a certain investment of randomness, and the treatment remains asymptotic.
Curiously, some earlier works had a more concrete treatment: in the asymmetric encryption arena,
Alexi et. al. [ACGS] were careful to specify the complexity of their reductions, a habit many later
works unfortunately dropped.

The construction of a pseudorandom generator from a one-way function [HILL] provides a
solution for symmetric encryption starting from a one-way function. In the current work existence
is not the issue; we are interested in concrete security and the analysis of some particular schemes.

A concrete security analysis of the CBC MAC is provided in [BKR]. (The CBC MAC should not
be confused with CBC encryption: The former is a message authentication code.) We build on their
techniques, but those techniques don't directly solve the problems here. CBC mode encryption is
standardized in [ANSI, ISO, NBS].

2 Notions of Encryption

For all complexity measures �x some probabilistic RAM model. We adopt the convention that
\time" refers to the actual running time plus the size of the code (relative to some �xed programming
language). Oracle queries are answered in unit time.

If A(�; �; : : :) is any probabilistic algorithm then a A(x1; x2; : : :) denotes the experiment of
running A on inputs x1; x2; : : : and letting a be the outcome, the probability being over the coins
of A. Similarly, if A is a set then a A denotes the experiment of selecting a point uniformly
from A and assigning a this value.

2.1 Syntax of Encryption Schemes

Let Coins be a synonym for f0; 1g1 (the set of in�nite strings). LetMessage-Space � f0; 1g� be a set,
the message space, for which x 2 Message-Space implies x0 2 Message-Space for every x0 of the same
length as x. Let Key-Space � f0; 1g� be set, denoting the key space. Let Ciphertext-Space = f0; 1g�.

6

Stateless encryption. A (probabilistic, stateless, symmetric) encryption scheme, � = (E ;D;K)
is a three-tuple of algorithms:

E : Key-Space�Message-Space� Coins! Ciphertext-Space

D : Key-Space� Ciphertext-Space! Message-Space [f?g

K : Coins! Key-Space

Algorithm E is called the encryption algorithm; D is the decryption algorithm; and K is the
key generator. We require that for all a 2 Key-Space, x 2 Message-Space, and r 2 Coins,
D(a; E(a; x; r)) = x. We usually write the �rst argument to E and D, the key, as a subscript.
We call Ea(x; r) the encryption of plaintext x under key a and coins r, or more succinctly, the
ciphertext. We call Da(y) the decryption of ciphertext y under key a. Usually we omit mention
of the argument to K, thinking of K as a probabilistic algorithm, or else the induced probability
space. Similarly, we often omit mention of the �nal argument to E , thinking of Ea as a probabilistic
algorithm, or thinking of Ea(x) as the induced probability space. We intend Da(y) = ? to be used
in the case that y is not the encryption of any string x under key a.

For an encryption scheme to be useful, E , D, and K should be e�ciently computable functions,
but the notion of security makes no formal demands in this regard.

Stateful encryption. We also consider stateful encryption schemes, in which the ciphertext is a
function of some information, such as a counter, maintained by the encrypting party and updated
with each encryption. Formally such a scheme has the same syntax as before except that

E : Key-Space�Message-Space� State� Coins! State� Ciphertext-Space ;

were State � f0; 1g� is the set of possible states, containing a distinguished state, the empty string,
", which we call the initial state. Let E i (i = 1; 2) denote the i-th component of E . The ciphertext

is now (the output of) E2, while E1 is an updated state, stored by the sender, and used as the
third argument for the next application of the encryption function. Note that encryption becomes
stateful but decryption does not.

2.2 Four Notions of Security

We now give four notions for security, each modeling chosen-plaintext attack. In each case, we allow
the adversary access to an encryption oracle in some form; this is one feature distinguishing these
de�nitions from previous ones. We will describe our de�nitions for stateless encryption schemes
and later indicate how to modify them for stateful ones.

Real-or-Random. The idea is that an adversary cannot distinguish the encryption of text from
the encryption of an equal-length string of garbage. (By transitivity, the adversary cannot distin-
guish from each other the encryption of any two equal-length strings.) The formalization considers
two di�erent games. In Game 1 we start by choosing a random key a K. Then the adversary
is then given an oracle which, when asked a string x 2 Message-Space, responds with a (random)
encryption of x under key a. In Game 2 we start by choosing a random key a K. Then the ad-
versary is given an oracle which, when asked a string x 2Message-Space, responds with a (random)
encryption (under key a) of a random string of length jxj. The encryption scheme is \good" if no
\reasonable" adversary cannot obtain \signi�cant" advantage in distinguishing Games 1 and 2.

De�nition 1 [Real-or-random] Encryption scheme � = (E ;D;K) is said to be (t; q; �; �)-
secure, in the real-or-random sense, if for any adversary A which runs in time at most t, makes at

7

most q oracle queries, these totaling at most � bits,

AdvrrA
def
= Pr

h
a K : AEa(�) = 1

i
� Pr

h
a K : AEa($j�j) = 1

i
� � :

The notation AEa(�) indicates A with an oracle which, in response to a query x, returns y Ea(x).
(Meaning it picks a random string r and returns Ea(x; r). A new random string is chosen for each

invocation of the oracle.) The notation AEa($j�j) indicates A with an oracle which, in response to a
query x, chooses x0 f0; 1gjxj and then returns y Ea(x

0).

Left-or-Right. We again consider two di�erent games. In either game a query is a pair (x1; x2)
of equal-length strings from Message-Space. In either game we start by choosing a random key
a K and �xing this key for the duration of the game. In Game 1, an oracle receiving (x1; x2)
responds with with a random sample from Ea(x1). In Game 2 it responds with a random sample
from Ea(x2). Thus, Game 1 provides a \left" oracle and Game 2 provides a \right" oracle. We
consider an encryption scheme to be \good" if \reasonable" adversary cannot obtain \signi�cant"
advantage in distinguishing Games 1 and 2.

De�nition 2 [Left-or-Right] Encryption scheme � = (E ;D;K) is said to be (t; q; �; �)-secure,
in the left-or-right sense, if for any adversary A which runs in time at most t and asks at most q

queries, these totaling at most � bits,2

AdvlrA
def
= Pr

h
a K : AEa(left(�;�)) = 1

i
� Pr

h
a K : AEa(right(�;�)) = 1

i
� � :

The notation AEa(left(�;�)) indicates A with an oracle which, in response to query (x1; x2), returns

y Ea(x1). The notation AEa(right(�;�)) indicates A with an oracle which, in response to query
(x1; x2), returns y Ea(x2).

Find-then-Guess. This is an adaptation of the notion of polynomial security as given in [GM,
MRS]. We imagine an adversary A that runs in two stages. During the adversary's �nd stage
she endeavors to come up with a pair of equal-length messages, x0 and x1, whose encryptions she
wants to try to tell apart. She also retains some state information s that she may want to preserve
to help her later. In the adversary's guess stage she is given a random ciphertext y for one of
the plaintexts x0; x1, together with the state information s. The adversary \wins" if she correctly
identi�es which plaintext goes with y. The encryption scheme is \good" if \reasonable" adversaries
can't win signi�cantly more than half the time.

De�nition 3 [Find-then-Guess] Encryption scheme � = (E ;D;K) is said to be (t; q; �; �)-
secure, in the �nd-then-guess sense, if for any adversary A which runs in time at most t and asks

at most q queries, these totaling at most � bits,

Adv
fg

A
def
= 2 � Pr

h
a K; (x0; x1; s) AEa(�)(�nd); b f0; 1g; y Ea(xb) :

AEa(�)(guess; y; s) = b
i
� 1 � � :

It is understood that, above, one demands jx0j = jx1j. The multiplication by 2 and subtraction by 1
are just scaling factors, to make a numeric value of 0 correspond to no advantage and a numeric
value of 1 correspond to perfect advantage.

Semantic. Goldwasser and Micali [GM] explain semantic security by saying that whatever can
be e�ciently computed about the plaintext given the ciphertext can also be computed in the

2
We de�ne the length of an oracle query (x1; x2) to be jx1j = jx2j.

8

absence of the ciphertext. We adapt the formalizations of [GM, MRS] to the symmetric setting.
Let f : Message-Space ! f0; 1g� be some function of the plaintext x. The function represents
the information about x that the adversary is trying to �gure out. Endow Message-Space with a
probability distribution. More speci�cally, for any integer m, an m-distribution on the message
space is a collectionM = fMg2f0;1g�m of probability distributions over Message-Space, indexed

by strings 2 f0; 1g�m. We assume each distribution is valid, meaning that for all , all strings
inM with non-zero probability have the same length, and this length is at most m. Let p�f;M

=
maxy�fPr[x M : f(x) = y�]g. This is the probability of the most likely f(�)-value.

Our adversary will run in two stages. During the adversary's select stage it endeavors to come
up with an advantageous distribution M . In the adversary's predict stage it is given a random
ciphertext y for a plaintext x chosen according to the distributionM and it wants to guess f(x).
An encryption scheme is semantically secure for function f and distributionsM if no reasonable
adversary A can guess f(x) with probability signi�cantly better than p�f;M

.
Previous formalizations required the condition to hold for all functions f . In our concrete treat-

ment both the function f and the probability distributionM become parameters, so that we can
measure how well particular properties of a plaintext are protected under particular distributions.

De�nition 4 [Semantic] Let f : Message-Space! f0; 1g� be a function and letM = fMg2f0;1g�m

be an m-distribution on Message-Space. Encryption scheme � = (E ;D;K) is said to be (t; q; �; �)-
secure in the semantic sense, for f overM, if

AdvsmA (f;M)
def
= E

h
a K; (; s) AEa(�)(select) : �(a; ; s)

i
� � ;

where

�(a; ; s) = Pr[x M ; y Ea(x) : A
Ea(�)(predict; y; s) = f(x)]� p�f;M

;

for any adversary A that runs in time at most t, and makes at most q oracle queries, these totaling

at most � bits.

Modifying the definitions for the stateful case. De�nitions of security for stateful en-
cryption schemes are obtained by modifying the above de�nitions in the natural way, adjusting
how one answers oracle queries. For example, in De�nition 1, AEa(�) now means A with an oracle
that maintains a state �, initially ". Upon receiving a query x it picks coins r and sets (�0; y) to be
Ea(x; �; r). It returns y as the answer to the oracle query and updates the state via � �0. Notice
that the ciphertext (meaning y) is returned, but the updated state is not. (Thus we are abusing
notation when we write AEa(�); we ought to write AE2

a
(�).) Notice that the encryption oracles now

have \memory": between invocations, the state is modi�ed and retained. The notation AEa($
j�j
)

can be similarly re-interpreted, and the same approach applies to the other three de�nitions.

Asymptotic definitions. Our de�nitions are easily extended to the standard asymptotic frame-
work by simply saying that a scheme is secure, in a given sense, if the advantage of any polynomial
time adversary is negligible, as a function of an underlying security parameter on which the scheme
now depends. The above formulations just enable us to make more concrete statements.

3 Reductions Among the Notions

Here we look at the reductions among the di�erent notions of security. We look at both upper
bounds and lower bounds. The proofs of these results are in Appendix A.

Because we are paying attention to concrete security bounds, we can use our results to decide
how strong is a notion of security relative to other notions to which it is polynomially equivalent.

9

This information is useful because it helps us identify the most desirable starting points for reduc-
tions. We implicitly use this information in Section 4 when we demonstrate the security of schemes
via reductions from left-or-right indistinguishability.

In the theorems below, c is an absolute constant that depends only on details of the under-
lying model of computation. The �rst two theorems say that our �rst two notions, left-or-right
indistinguishability and real-or-random indistinguishability, are of essentially equivalent strength.

Theorem 1 [Real-or-random implies left-or-right] For some constant c > 0, if encryption
scheme � = (E ;D;K) is (t1; q1; �1; �1)-secure in the real-or-random sense then it is (t2; q2; �2; �2)-
secure in the left-or-right sense, where t2 = t1 � c � �2 and q2 = q1 and �2 = �1 and �2 = 2�1.

Theorem 2 [Left-or-right implies real-or-random] For some constant c > 0, if encryption
scheme � = (E ;D;K) is (t2; q2; �2; �2)-secure in the left-or-right sense then it is (t1; q1; �1; �1)-secure
in the real-or-random sense, where t1 = t2 � c � �1 and q1 = q2 and �1 = �2 and �1 = �2.

Left-or-right indistinguishability and real-or-random indistinguishability constitute a stronger no-
tion of security than the traditional �nd-then-guess notion. Intuitively, the adversary's job is harder
with �nd-then-guess because it has to single out a single message pair on which to perform. This
is illustrated by Theorems 3 and 4 and Proposition 5.

The �rst theorem says that a scheme with a certain security in the left-or-right sense has
essentially the same security in the �nd-then-guess sense.

Theorem 3 [Left-or-right implies �nd-then-guess] For some constant c > 0, if encryption
scheme � = (E ;D;K) is (t2; q2; �2; �2)-secure in left-or-right sense then it is (t3; q3; �3; �3)-secure in

the �nd-then-guess sense, where t3 = t2 � c � �3 and q3 = q2 and �3 = �2 and �3 = �2.

The next theorem says that if a scheme has a certain security in the �nd-then-guess sense, then it
is secure in the left-or-right sense, but the security shown is quantitatively lower.

Theorem 4 [Find-then-guess implies left-or-right] For some constant c > 0, if encryption
scheme � = (E ;D;K) is (t3; q3; �3; �3)-secure in the �nd-then-guess sense then it is (t2; q2; �2; �2)-
secure in the left-or-right sense, where t2 = t3 � c � �2 and q2 = q3 and �2 = �3 and �2 = q2�3.

The following proposition says that the drop in security above is not due to any weakness in the
reduction but is intrinsic| we present a scheme having a higher security in the �nd-then-guess sense
than in the left-or-right sense, with the gap being the same as in the theorem above. Obviously we
can make no such statement if there are no secure encryption schemes around at all, so the theorem
assumes there exists a secure scheme, and then constructs a di�erent scheme exhibiting the desired
gap.

In the following think of �0 as very small (essentially zero). The constructed scheme �0 can
be broken with probability �2 = 0:632, using q queries, in the left-or-right sense, meaning it is
completely insecure under this notion. However, the probability of breaking it (with comparable
resources) in the �nd-then-guess sense is �3 � 1=q. The probabilities obey the relation q�3 = �(�2),
showing that Theorem 4 is essentially tight. Furthermore, if one allows the scheme to be stateful,
one can make �2 exactly one, so that q�3 � �2.

Proposition 5 [Left-or-right is stronger than �nd-then-guess] There is a constant c >

0 such that the following is true. Suppose there exists a stateless encryption scheme, over a

message space containing f0; 1g, that is (t0; q; �; �0)-secure in the �nd-then-guess sense. Then there

exists a stateless encryption scheme �0 which is (t2; q; q; �2)-breakable in the left-or-right sense and

10

(t3; q; �; �3)-secure in the �nd-then-guess sense, where �2 = 0:632 and �3 = �0 + 1=q and t2 = cq

and t3 = t0. Furthermore there exists a stateful encryption scheme �00 which has the same features

except that �2 = 1.

Semantic security is too complex to make it a good starting point for proving schemes secure. Still,
as the next theorem indicates, it is nice that there is a strong reduction from semantic security to
�nd-then-guess security. Notice that for this only requires semantic security to hold for a particular
and simple function, the identity function, and a particular and simple distribution over the message
space. This theorem is implicit in [GM] for the asymmetric setting and their proof is easily adapted
to the symmetric setting.

Theorem 6 [Semantic implies �nd-then-guess] Let f be the identity function. For any pair

 = (x0; x1) of equal length strings in Message-Space let M be the distribution assigning proba-

bility 1=2 to each of x0 and x1, and probability 0 to all other strings. LetM be arbitrarily de�ned

when does not have this form. Let M = fMg2f0;1g�t4 . Then for some constant c > 0, if �
is (t4; q4; �4; �4)-secure in the semantic sense for f over M, then it is (t3; q3; �3; �3)-secure in the

�nd-then-guess sense, where t3 = t4 � c � �3 and q3 = q4 and �3 = �4 and �3 = 2�4.

Combining this with Theorem 4 yields a reduction from security in the semantic sense to security
in the left-or-right sense, but this reduction inherits the security loss of the reduction of Theorem 4.
As before it turns out this loss is inherent: security in the left-or-right sense is a stronger notion.
The example to see this is essentially the same as that in the proof of Proposition 5 but the setup
becomes more complicated. We do not discuss it further here.

In the other direction, the time complexity of sampling the the message space and computing
the function f come into the picture. Let TM(�) be a function taking jj as input and returning
a bound on the time to sample from M . Let Tf (�) denote the time to compute f(x) given x,
measured as a function of jxj. Both time functions are assumed monotone.

Theorem 7 [Find-then-guess implies semantic] There is a constant c > 0 such that the

following is true. Let f be a function that is computable in time Tf (�) and let M be a valid m-

distribution over Message-Space sampleable in time TM(�). If � = (E ;D;K) is (t3; q3; �3; �3)-secure
in the �nd-then-guess sense then it is (t4; q4; �4; �4)-secure in the semantic sense for f over M,

where t4 = t3 � 2TM(m)� Tf (m)� c � �4 and q4 = q3 and �4 = �3 and �4 = 2�3.

Combining Theorems 1, 3 and 7 yields a security preserving reduction from real-or-random to
semantic. Nonetheless, we specify a direct reduction via the following theorem, which shows that
the constant factors are better than those obtained by the roundabout route. The main reason to
present Theorem 8 is that the proof is interesting.

Theorem 8 [Real-or-random implies semantic] There is a constant c > 0 such that the

following is true. Let f be a function that is computable in time Tf (�) and let M be a valid m-

distribution over Message-Space sampleable in time TM(�). Then if � = (E ;D;K) is (t1; q1; �1; �1)-
secure in the real-or-random sense, then � is (t4; q4; �4; �4)-secure in the semantic sense, for f

overM, where t4 = t1 � TM(m) + Tf (m)� c�4, and q4 = q1 � 1, and �4 = �1 �m, and �4 = �1.

Notice that the larger the functions TM(�); Tf (�), the less the semantic security for f over M as
given by Theorems Theorem 7 and 8. Does this reect a reality? That is, would we expect the
adversary might have an easier time �guring out some complex property of the plaintext than
�guring out simple properties of the plaintext? Perhaps. In any case, these theorems are most
useful when the information function f is simple, like the XOR of all the bits.

11

In earlier work [GM, MRS, Go1] no restriction was made on the complexity of f ; it was even
allowed to be uncomputable. Clearly semantic security against such very complex functions does
not follow from Theorem 7 or Theorem 8. However it seems possible to do a di�erent reduction by
using the techniques of [Go1]. Here, the complexity of f would not enter (though the complexity
of sampling M would still matter). The dependencies on other parameters would be increased.
Thus the theorems would be useful in talking about complex functions f , but less useful than
Theorem 7 and Theorem 8 in talking about simple functions. We do not pursue this more at the
moment because, as we have indicated above, other notions of security are more suitable targets
than semantic security as targets for actual schemes to meet.

Putting things together, showing an encryption scheme left-or-right secure or real-or-random
secure implies tight reductions to all other notions (modulo the technical restriction on the com-
plexity of f and M for semantic security). Showing an encryption scheme �nd-then-guess secure
or semantically secure does not. Thus, if the bounds are equal, it is better to demonstrate security
with respect to one of the �rst two notions, since that immediately translates into equally-good
bounds for the other notions.

Asymptotic security. The above theorems imply that all the notions considered are equivalent
under polynomial time reductions, because, as the theorems indicate, all the translations involve
only polynomial factors. We are just saying something stronger.

Asymmetric encryption. All of the above de�nitions and results carry over to the asymmetric
setting. In that setting it is not necessary to give the adversary an encryption oracle for the
purpose of facilitating a chosen plaintext attack (but the encryption oracle remains for left-or-
right indistinguishability and real-or-random indistinguishability for the purpose of testing the
adversary's e�ectiveness). For all four notions it is important to provide the adversary with the
public key. Then it remains true, even in the asymmetric setting that, from the point of view of
concrete security, to prove a good bound on real-or-random indistinguishability, say, is \better"
than providing an equally-good bound on �nd-then-guess security.

4 Analysis of Some Symmetric Encryption Schemes

Next we turn to analyzing schemes for symmetric encryption. All these schemes are based on
�nite pseudorandom functions, a concrete security version of the original notion of pseudorandom
functions [GGM] introduced by [BKR]. We thus begin with some necessary de�nitions, following
the latter paper. Proofs of results given in this section are in Appendix B.

4.1 Finite PRFs and PRPs

A function family is a multiset F of functions where all of the functions in F have the same domain
and range. Usually the domain is f0; 1gl and the range is f0; 1gL for some l; L called, respectively,
the input length and the output length. We assume that each key a from some set K speci�es a
function Fa: f0; 1g

l ! f0; 1gL from F . Usually K is the set of all strings of some �xed length k.
We write f F to denote the operation of selecting a function at random from F according to
the distribution given by picking a random a K and assigning f = Fa.

For a function family F to be accessible to applications we usually want that, given a, one can
easily compute Fa. But we make nor formal requirements in this regard, and indeed it is useful to
think about \inaccessible" function families, as below.

We let Rl;L be the function family consisting of all functions from the set of l-bit strings to
the set of L-bit strings. (The key a can be viewed as the entire description of the function.)

12

With l; L understood, we write R instead of Rl;L. Thus f R is the operation of selecting a
random function from l-bits to L-bits. Similarly, we let Pl be the function family consisting of all
permutations on l-bit strings. With l understood we write P instead of Pl.

Let F;G be families of functions with the same input and output lengths. consider an oracle
algorithm, known as a distinguisher, that attempts to distinguish between the case where its oracle h
is chosen randomly from F and the case where h is chosen randomly from G. Let

DistD(F;G) = Pr
h
h F : Dh(�) = 1

i
� Pr

h
h G : Dh(�) = 1

i
:

A pseudorandom function family has the property that the input-output behavior of Fa \looks
random" to someone who does not know the randomly selected key a. There are two notions of
\looking random" that are important. The �rst is looking like a random function, the second is
looking like a random permutation. Accordingly, we de�ne

AdvrfD(F) = DistD(F;R)

Adv
rp

D (F) = DistD(F; P) :

De�nition 5 [Concrete security of PRF/PRP families, [BKR]] Function family F is said to
be a (t; q; �)-secure PRF (resp. PRP) family if for any distinguisher D who makes at most q oracle
queries and runs in time at most t it is the case that AdvrfD(F) � � (resp. AdvrpD (F) � �).

Notice that unlike Luby and Racko� [LR], we measure the quality of a PRP family by the distance
to the family of random permutations, not random functions. This is motivated by the fact that
PRPs, as we de�ne them, are better models for block ciphers, like DES, than PRFs. (Of course,
the distinction is only in the concrete security, but that is indeed our concern.) Nonetheless, the
following relation between the two notions is often enough:

Proposition 9 [PRPs are PRFs] Suppose F is a (t; q; �)-secure PRP family with input and

output length l. Then F is a (t; q; e0)-secure PRF family, where �0 = �� q22�l�1.

The estimated cryptanalytic strength of speci�c block ciphers gives us estimates for values of t; q; �
for which a particular block cipher, eg. DES, may be viewed as a (t; q; �)-secure PRP family. Using
the above proposition gives us the bounds by which it can be viewed as a (t; q; �)-secure PRF.

4.2 The XOR Schemes

Fix a function family F with input length l, output length L, and key length k. We let a denote
the key shared between the two parties who run the encryption scheme. It will be used to specify
the function f = Fa. In fact, all the schemes depend only only on this function, in the sense that
they can be implemented given an oracle for the function. We let R = Rl;L.

There are two version of the XOR scheme| one stateless (randomized) and the other stateful
(counter based and deterministic).

Specifications. The scheme XOR$(F) = (E-XOR$;D-XOR$;K-XOR$) works as follows. The
key generation algorithm K-XOR$ just outputs a random k-bit key a for the underlying PRF
family F , thereby specifying a function f = Fa of l-bits to L-bits. The message x to be encrypted
is regarded as a sequence of L-bit blocks (padding is done �rst, if necessary), x = x1 � � � xn. We
de�ne E-XOR$a(x) = E-XOR$

Fa(x) and D-XOR$a(z) = D-XOR$
Fa(z), where:

function E-XOR$f (x)
r f0; 1gl

for i = 1; : : : ; n do yi = f(r + i)�xi
return r k y1y2 � � � yn

function D-XOR$f (z)
Parse z as r k y1 � � � yn
for i = 1; : : : ; n do xi = f(r + i)�yi
return x = x1 � � � xn

13

We call r the nonce. Addition, above, is modulo 2l, and the result is encoded as an l-bit string in
the usual way.

This scheme also has a stateful variant, XORC = (E-XORC;D-XORC;K-XORC). Here the role
of r is played by a l-bit counter, denoted ctr , that is initially �1 and increases after each encryption
by the number of encrypted blocks. Note only the sender maintains the counter and it is output
as part of the ciphertext. A restriction placed on the scheme is that the total number of encrypted
blocks be at most 2l.

The key generation algorithm K-XORC is the same as before, meaning just outputs a ran-
dom key a for the PRF family. With the same formatting conventions as above, we de�ne
E-XORCa(x; ctr) = E-XORC

Fa(x; ctr) and D-XORCa(z) = D-XORC
Fa(z), where:

function E-XORCf (x; ctr)
for i = 1; : : : ; n do yi = f(ctr + i)�xi
ctr ctr + n

return (ctr ; ctr k y1y2 � � � yn)

function D-XOR$f (z)
Parse z as ctr k y1 � � � yn
for i = 1; : : : ; n do xi = f(ctr + i)�yi
return x = x1 � � � xn

Features of the schemes. Notice that decryption does not require the ability to invert f = Fa.
Thus Fa need not be a permutation.

The XOR schemes have some computational advantages over the more common modes of oper-
ation. Namely, the Fa computations on di�erent blocks can be done in parallel since the computa-
tion on a block is independent of the other blocks. This parallelizability advantage can be realized
through either hardware or software support. Decryption does not have to be done in order if each
block is tagged with its index. These schemes also support o�-line processing, in the sense that
the Fa computations can be done during idle times before the messages they are to be used with
become available.

Security of XOR$. We �rst derive a lower bound on the success of an adversary trying to break
the XOR$(F) scheme in the left-or-right sense. In the common cryptographic terminology, this
means, simply, that we are providing an attack. The attack we specify is on the \ideal" scheme,
namely the one where the underlying function f is truly random.

Proposition 10 [Lower bound on security of XOR$ in random function model] There is

an adversary E for XOR$(Rl;L), in the left-or-right sense, who makes up to q queries, totaling at

most � bits, (�q=L � 2l) and achieves AdvlrE � 0:316 � ��(q�1)
L�2l

.

This is a \birthday" attack. It may be easier to gauge if we let �n = �=(Lq) be the average number
of blocks per query, so that � = Lq � �n. Then we see that AdvlrE =
(q2=2l) � �n, a typical birthday
behavior exhibiting a quadratic dependence on the number of queries.

Since we prove a lower bound in the random function model, we do not discuss the time used
by E. However it is clear from the strategy that the total time used by E would be just a little
overhead besides the time for the oracle calls. This is true for all lower bounds and we won't
mention it again.

Proposition 10 indicates that even when the underlying block cipher F is very good (it can't
get better than truly random) the XOR scheme leaks some information as more and more data
is encrypted. Next, we show that the above is essentially the best attack: one can't get a better
advantage, up to a constant factor. The crucial point below is that the bound holds for any

adversary.

14

Lemma 11 [Upper bound on security of XOR$ in random function model] Let E be any

adversary attacking XOR$(Rl;L) in the left-or-right sense, making at most q queries, totaling at

most � bits. Then AdvlrE � �XOR$
def
= �(q�1)

L�2l
.

Of course, an indication of security in the ideal model is not an indication of security when we use
a block cipher. The \real-world" case however is easily derived from the above:

Theorem 12 [Security of XOR$ using a pseudorandom function] There is a constant c > 0
such that the following is true. Suppose F is a (t0; q0; �0)-secure PRF family with input length l and

output length L. Then for any q the XOR$(F) scheme is (t; q; �; �)-secure in the left-or-right sense,

for � = q0L and t = t0 � c � �
L(l + L) and � = 2�0 + �XOR$, where �XOR$

def
= �(q�1)

L�2l
.

Security of XORC. The stateful version of the scheme has better security. The adversary has
no advantage in the ideal case:

Lemma 13 [Upper bound on security of XORC in random function model] Let E be any

adversary attacking XORC(Rl;L) in the left-or-right sense, making at most q queries, totaling at

most � < L2l bits. Then AdvlrE = 0.

This translates into the following \real-world" security:

Theorem 14 [Security of XORC using a pseudorandom function] There is a constant c > 0
such that the following is true. Suppose F is a (t0; q0; �0)-secure PRF family with input length l

and output length L. Then for any q the XORC(F) scheme is (t; q; �; �)-secure in the left-or-right

sense, for � = min(q0L;L2l) and t = t0 � c � �
L
(l + L) and � = 2�0.

4.3 The CBC Scheme

For the CBC scheme we require that l = L (the input and output lengths of F are the same) and
that each Fa be a permutation such that given a we can compute not only Fa but also F�1

a . As
far as security goes, however, we still view F a pseudorandom function family. Having stated the
results for this case we will discuss what happens when F is a PRP family.

Specification. The scheme CBC$(F) = (E-CBC$;D-CBC$;K-CBC$) has the same key gener-
ation algorithm as the previous schemes, meaning the key for encryption is the key a specifying
f = Fa. The message x to be encrypted is regarded as a sequence of l bit blocks, x = x1 : : : xn. We
de�ne E-CBC$a(x) = E-CBC$

Fa(x) and D-CBC$a(z) = D-CBC$
Fa(z), where:

function E-CBC$f (x)
y0 f0; 1g

l

for i = 1; : : : ; n do yi = f(yi�1�xi)
return y0 k y1y2 � � � yn

function D-CBC$f (z)
Parse z as y0 k y1 � � � yn
for i = 1; : : : ; n do xi = f�1(yi)�yi�1
return x = x1 : : : xn

The value y0 is called initial vector, or nonce. See discussion below for the counter variant.

Security of CBC$. Birthday attacks remain possible even when the underlying block cipher is
ideal:

15

Proposition 15 [Lower bound on security of CBC$ in random function model] There is

an adversary E for CBC$(Rl;l), in the left-or-right sense, who makes up to q queries, totaling at

most � bits,(� � l � 2
l

2) and achieves

AdvlrE � 0:316 �
�
1� 2 � 2�l=2

�
�

�2

l2
�
�

l

!
�
1

2l
:

However, these are the best possible attacks up to a constant factor:

Lemma 16 [Upper bound on security of CBC$ in random function model] Let E be any

adversary attacking CBC$(Rl;l) in the left-or-right sense, making at most q queries, totaling at

most � bits. Then

AdvlrE � �CBC$
def
=

�2

l2
�
�

l

!
�
1

2l
:

The \real-world" security follows:

Theorem 17 [Security of CBC$ using a pseudorandom function] There is a constant c > 0
such that the following is true. Suppose F is a (t0; q0; �0)-secure PRF family with input length l and

output length L. Then for any q the CBC$(F) scheme is (t; q; �; �)-secure in the left-or-right sense,

for � = q0l and t = t0 � c� and � = 2�0 + �CBC$, where �CBC$
def
=
�
�2

l2
�

�
l

�
� 2�l.

CBC should really be analyzed assuming F is a PRP family, not a PRF family, because the scheme
must indeed be used with permutations, not functions. For the upper bound, it doesn't really make
a di�erence, because we can apply Proposition 9 to Lemma 16 to make the translation. For the
lower bound, however, this will not help. Thus at this point, it is conceivable that if F is a PRP
family, CBC encryption is much more secure than the upper bound indicates. Yet in fact this is
not true. The following says the same lower bound holds for permutations.

Proposition 18 [Lower bound on security of CBC$ in random permutation model] There

is an adversary E for CBC$(Pl;l), in the left-or-right sense, who makes queries totaling at most �

bits, (� � l � 2
l

2) and achieves

AdvlrE � 0:316 �

�2

l2
�
�

l

!
�
1

2l
:

Note that Proposition 15 held for any q. In contrast, in Proposition 18, given �, we allow the
adversary to choose a convenient q. (Which turns out to be q = �=l.) In this sense Proposition 18
is weaker. We believe it should be possible to improve Proposition 18 but have not done the analysis
at this time.

CBC with counters. It is tempting to make a counter variant of CBC and hope that the security
is increased (or at least preserved). Indeed it is suggested in various books that the initialization
vector may be a counter. But this does not work; knowing the next value of the counter, the
adversary can choose a message query that forces a collision in the inputs to f , thus breaking the
scheme (under any of the de�nitions).

To make a proper counter version of CBC$, one can let the initialization vector be y0 = f(ctr)
and increment ctr by one following every encryption. The scheme is capable of encrypting at
most 2l messages. An analog to Theorem 17 is then possible. The result is easiest (following as a
corollary to Theorem 17 if the key used to determine y0 is separate from the key used for the rest
of the CBC encryption.

16

Acknowledgments

We thank Ran Canetti, who gave some helpful comments on an earlier draft, and Jim Gray, who
suggested the variant of De�nition 1 which appears here.

References

[ACGS] W. Alexi, B. Chor, O. Goldreich, C. Schnorr, \RSA and Rabin functions: Certain parts

are as hard as the whole," SIAM Journal on Computing Vol. 17, No. 2, 1988, pp. 194{209.

[ANSI] ANSI X3.106, \American National Standard for Information Systems { Data Encryption Algorithm

{ Modes of Operation," American National Standards Institute, 1983.

[BCK] M. Bellare, R. Canetti and H. Krawczyk \Psuedorandom functions revisited: The cascade

construction and its concrete security," Proceedings of the 37th Symposium on Foundations of

Computer Science, IEEE, 1996.

[BGR] M. Bellare, R. Gu�erin and P. Rogaway, \XOR MACs: New methods for message authen-

tication using �nite pseudorandom functions," Advances in Cryptology { Crypto 95 Proceedings,

Lecture Notes in Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

[BKR] M. Bellare, J. Kilian and P. Rogaway, \The security of cipher block chaining," Advances

in Cryptology { Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Y. Desmedt

ed., Springer-Verlag, 1994.

[BR1] M. Bellare and P. Rogaway, \Optimal asymmetric encryption { How to encrypt with RSA,"

Advances in Cryptology { Eurocrypt 95 Proceedings, Lecture Notes in Computer Science Vol. 921,

L. Guillou and J. Quisquater ed., Springer-Verlag, 1995.

[BR2] M. Bellare and P. Rogaway, \The exact security of digital signatures: How to sign with RSA

and Rabin," Advances in Cryptology { Eurocrypt 96 Proceedings, Lecture Notes in Computer

Science Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

[BG] M. Blum and S. Goldwasser, \An e�cient probabilistic public-key encryption scheme which

hides all partial information," Advances in Cryptology { Crypto 84 Proceedings, Lecture Notes in

Computer Science Vol. 196, R. Blakely ed., Springer-Verlag, 1984.

[DDN] D. Dolev, C. Dwork and M. Naor, \Non-malleable cryptography," Proceedings of the 23rd

Annual Symposium on Theory of Computing, ACM, 1991.

[Go1] O. Goldreich \A uniform complexity treatment of encryption and zero-knowledge," Journal of

Cryptology, Vol. 6, 1993, pp. 21-53.

[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan and D. Zuckerman, \Security

preserving ampli�cation of hardness," Proceedings of the 31st Symposium on Foundations of

Computer Science, IEEE, 1990.

[GL] O. Goldreich and L. Levin, \A hard-core predicate for all one-way functions," Proceedings of

the 21st Annual Symposium on Theory of Computing, ACM, 1989.

[GGM] O. Goldreich, S. Goldwasser and S. Micali, \How to construct random functions," Journal

of the ACM, Vol. 33, No. 4, 1986, pp. 210{217.

[GM] S. Goldwasser and S. Micali, \Probabilistic encryption," J. of Computer and System Sciences,

Vol. 28, April 1984, pp. 270{299.

[HL] A. Herzberg and M. Luby, \Public randomness in cryptography," Advances in Cryptology {

Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-

Verlag, 1992.

17

[HILL] J. H�astad, R. Impagliazzo, L. Levin and M. Luby, \Construction of a pseudo-random gen-

erator from any one-way function," ICSI Technical Report, No. 91-068, submitted to SICOMP.

[ISO] ISO 8372, \Information processing { Modes of operation for a 64-bit block cipher algorithm,"

International Organization for Standardization, Geneva, Switzerland, 1987.

[L] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton University Press, 1996.

[LR] M. Luby and C. Rackoff, \How to construct pseudorandom permutations from pseudorandom

functions," SIAM J. Computation, Vol. 17, No. 2, April 1988.

[MRS] S. Micali, C. Rackoff and R. Sloan, \The notion of security for probabilistic cryptosystems,"

SIAM J. of Computing, April 1988.

[NBS] National Bureau of Standards, NBS FIPS PUB 81, \DES modes of operation," U.S Department

of Commerce, 1980.

[NY] M. Naor and M. Yung, \Public-key cryptosystems provably secure against chosen ciphertext

attacks," Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 1990.

[Y] A. C. Yao, \Theory and applications of trapdoor functions," Proceedings of the 23rd Symposium

on Foundations of Computer Science, IEEE, 1982.

A Proofs for Reductions Between Notions

This section contains all the proofs for Section 3.

Proof of Theorem 1: We shall prove this through contradiction. Assume that an adversary,
A2, can (t2; q2; �2; �2)-break � in the left-or-right sense. We construct a new adversary A1 that can
(t1; q1; �1; �1)-break � in the real-or-random sense.

Let O1(�) be A1's oracle. A
O1

1
will run A2, using O1 to provide an appropriate simulation of A2's

oracle, as indicated below.

Algorithm A
O1(�)
1

(1) b f1; 2g

(2) If b = 1 then d A
O1(left(�;�))
2

, else d A
O1(right(�;�))
2

.

(3) If b = d then output 1 else output 2.

We clearly have �1 = �2, q1 = q2, and t1 = t2 + c � �2. We now compute A1's advantage. Let Pr[�]
stand for the probability under the choice a K and whatever coins are involved in the events
mentioned in the probability. When O1(�) = Ea($

j�j) then O1(left(�; �)) and O1(right(�; �)) return

identically distributed answers. So Pr[A
Ea($j�j)
1

= 1] = 1=2. Using this we have

AdvrrA1
= Pr[A

Ea(�)
1

= 1]� Pr[A
Ea($j�j)
1

= 1]

= Pr[A
Ea(�)
1

= 1]�
1

2

=
1

2
Pr[A

Ea(left(�;�))
2

= 1] +
1

2

�
1� Pr[A

Ea(right(�;�))
2

= 1]
�
�
1

2

=
1

2

�
Pr[A

Ea(left(�;�))
2

= 1]� Pr[A
Ea(right(�;�))
2

= 1]

�

�
1

2
�2:

So �1 =
1

2
�2.

18

Proof of Theorem 2: We shall prove this through contradiction. Assume that an adversary
A1 can (t1; q1; �1; �1)-break encryption scheme � in the real-or-random sense. We construct a new
adversary A2 that can (t2; q2; �2; �2)-break � in the left-or-right sense.

Let O2(�; �) be A2's oracle. De�ne O1(x) to be O2(x; $
jxj), where $jxj is a random string of length

jxj chosen anew each time the oracle is invoked. Notice A2 can compute O1(�) via its access to
O2(�; �). A2 runs A1, emulating A1's oracle by answering query x with O1(x). That is:

Algorithm A
O2(�;�)
2

(1) Output A
O1(�)
1

We clearly have �2 = �1, q2 = q1, �2 = �1, and t2 = t1 + c � �1.

Proof of Theorem 3: We shall prove this through contradiction. Assume that an adversary
A3 can (t3; q3; �3; �3)-break encryption scheme � in the �nd-then-guess sense. We construct a new
adversary A2 that can (t2; q2; �2; �2)-break � in the left-or-right sense.

Let O2(�; �) be A2's oracle. De�ne O3(x) to be O2(x; x). A2 runs A3, emulating A3's oracle by
answering query x with O3(x). More precisely:

Algorithm A
O2(�;�)
2

(1) (x0; x1; s) A
O3(�)
3

(�nd)

(2) d A
O3(�)
3

(guess;O2(x0; x1); s)

(3) If d = 0 then output 1 else output 2.

We clearly have �2 = �3, q2 = q3, �2 = �3, and t2 = t3 + c � �3.

Proof of Theorem 4: We shall prove this through contradiction. Assume that an adversary
A2 can (t2; q2; �2; �2)-break encryption scheme � in the left-or-right sense. We construct a new
adversary A3 that can (t3; q3; �3; �3)-break � in the �nd-then-guess sense. Let O3(�) be A3's oracle.

Algorithm A
O3(�)
3

(�nd)

(1) i f1; � � � ; q2g

(2) Run A
O3(left(�;�))
2

until the point at which it makes its i-th oracle query, which we denote
(xi

0
; xi

1
). (Meaning A2 has now made this query and is waiting for the response from the

oracle.) Let s be A2's runtime state at this point.

(3) Output (xi
0
; xi

1
; s)

Algorithm A
O3(�)
3

(guess; y; s)

(1) Resume execution of A2 in state s by answering its i-th oracle query (namely (xi
0
; xi

1
)) by y,

and stop before it makes another oracle query.

(2) Continue executing A2 by answering all remaining oracle queries via O3(right(�; �)), until A2

halts.

(3) If A2 outputs 1 then output 0, else output 1.

Clearly, q3 = q2, �3 = �2, and t3 = t2 + c � �2. We now claim that �3 = �2=q2. This is established
by a standard hybrid argument, as follows.

We de�ne a sequence of games G0; : : : ; Gq2 , where Gk is the game in which one chooses a K
and runs A2, answering the �rst k oracle queries of A2 via Ea(left(�; �)) and rest via Ea(right(�; �)).
Let Prk [A2 = 1] be the probability that A2 outputs 1 in game Gk. Now consider the experiment

19

de�ning Adv
fg

A3
as given in De�nition 3, where A3 is the algorithm above. In this experiment if

b = 0 then y = Ea(x
i
0
) and, in the simulation, A2 is playing Gi+1. On the other hand if b = 1 then

y = Ea(x
i
1
) and, in the simulation, A2 is playing Gi. Since i is chosen randomly from f1; � � � ; q2g by

A3,

Adv
fg

A3
=

1

q2
�
Pq2�1

i=0 (Pri [A2 = 1]� Pri+1 [A2 = 1])

= (Pr0 [A2 = 1]� Prq2 [A2 = 1]) =q2

= AdvlrA2
=q2

� �2=q2 :

Thus we can set �3 to �2=q2.

Proof of Proposition 5: Let � = (E ;D;K) be the given encryption scheme. We now de�ne
� = (E 0;D0;K0) and show that it has the claimed properties. Set K0 = K. Encryption is de�ned
via

Algorithm E 0a(x)

(1) Pick i f1; � � � ; qg

(2) If i = 1 then return 0 kx, else return 1 k Ea(x)

D0 is as one would expect. Now consider the following adversary A2 attempting to break �0 in the
left-or-right sense.

Algorithm A
O2(�;�)
2

(1) Fix a pair x1; x2 of distinct, equal length messages. (For concreteness x0 = 0 and x1 = 1,
which we assumed are in the message space of �.)

(2) For j = 1; � � � ; q do: yj O2(x1; x2)

(3) If there is some j such that yj = 0 kx1, then output 1. Else output 2.

One can check that A2's advantage is the probability that the i value chosen by E 0a is 1 in at least
one of the q encryptions, namely �2 = 1 � (1 � 1=q)q � 1 � 1=e. Notice A2 makes q queries, each
consisting of two 1-bit messages, and runs for time O(q), so its complexity is as claimed.

A �nd-then-guess adversary making q queries must hope that its challenge in the guess state, y,
begins with a 0. If not, it can achieve no advantage over and above that of an adversary attempting
to break �. With probability 1=q it is the case that y begins with 0, so the best advantage an
adversary under �nd-then-guess security can achieve is �3 = �0 + (1� �0)=q � �0 + 1=q.

Notice that �0 is stateless (as long as � is stateless). If we allow the constructed scheme to be
stateful we can slightly improve the constant factor in the gap between the securities, making �2
exactly 1 while keeping �3 the same as before. To do this we de�ne a stateful encryption scheme
�00 = (E 00;D00;K00) which maintains a counter ctr , initially zero. The key generator K00 outputs
(i; a) where i f1; : : : ; qg and a K. Encryption is as follows:

Algorithm E 00i;a(x; ctr)

(1) ctr ctr + 1

(2) If i = ctr then return (ctr ; 0 kx), else return (ctr ; 1 k Ea(x))

(Remember that according to our syntax for stateful schemes (cf. Section 2.1) the output of the
encryption algorithm is a pair consisting of the new state (here the updated counter) and the actual

20

ciphertext.) D00 is as one would expect. If we consider the same left-or-right adversary A2 as above,
executing now with scheme �00, we see that it is guaranteed to receive, in its q queries, a response
whose �rst bit is 0. So �2 = 1. On the other hand one can argue that �3 is the same as before.

Proof of Theorem 6: We shall prove this through contradiction. Assume that an adversary
A3 can (t3; q3; �3; �3)-break encryption scheme � in the �nd-then-guess sense. We construct a new
adversary A4 that can (t4; q4; �4; �4)-break � in the semantic sense, for function f and message
space M as de�ned in the theorem statement. We use the standard reduction of [GM] which is
easily extended to take into account the presence of the oracle.

Algorithm A
Ea(�)
4

(select)

(1) (x0; x1; s) A
Ea(�)
3

(select)

(2) Output ((x0; x1); (s; (x0; x1)))

That is, is the pair (x0; x1).

Algorithm A
Ea(�)
4

(predict; y; (s; (x0; x1)))

(1) b A
Ea(�)
3

(guess; y; s)

(2) Output xb

We clearly have �4 = �3, q4 = q3, t4 = t3 + c � �4. Notice that p�f;M
= 1=2. Using this one can

check that �4 = �3=2.

Proof of Theorem 7: We shall prove this through contradiction. Assume that an adversary A4

can (t4; q4; �4; ; �4)-break encryption scheme � in the semantic sense for function f and message
spaceM. We construct a new adversary A3 that can (t3; q3; �3; �3)-break � in the �nd-then-guess
sense.

Algorithm A
Ea(�)
3

(�nd)

(1) (; s) A
Ea(�)
4

(select)

(2) x0 M ; x1 M

(3) s0 (; s; x0; x1)

(4) Output (x0; x1; s
0)

Algorithm A
Ea(�)
3

(guess; y; (; s; x0; x1))

(1) z0 f(x0)

(2) z A
E(�)
4

(predict; y; s)

(3) If z = z0, output 0. Otherwise output a coin ip.

We clearly have �3 = �4, q3 = q4, t3 = t4 + 2TM(t4) + Tf (�4) + c�4, from which the claimed

complexities can be obtained. Now consider the experiment de�ning AdvfgA3
as given in De�nition 3,

and compute, using a notation hopefully clear by context:

Adv
fg

A3
= 2 � Pr[A3

Ea(�)(guess; Ea(xb); �) = b]� 1

= Pr[A3
Ea(�)(guess; Ea(x0); �) = 0]� Pr[A3

Ea(�)(guess; Ea(x1); �) = 0]

= Pr[A
Ea(�)
4

(guess; Ea(x0); �; �) = f(x0)] +
1

2
(1� Pr[A

Ea(�)
4

(guess; Ea(x0); �; �) = f(x0)])

�Pr[A3
Ea(�)(guess; Ea(x1); �) = 0]

21

=
1

2

�
Pr[A

Ea(�)
4

(guess; Ea(x0); �; �) = f(x0)] + 1
�
� Pr[A3

Ea(�)(guess; Ea(x1); �) = 0]

>
1

2

�
�4 + p�f;M

+ 1
�
� Pr[A3

Ea(�)(guess; Ea(x1); �) = 0] :

Note that

Pr[A3
Ea(�)(guess; Ea(x1); �) = 0] � p�f;M

+
1

2
(1� p�f;M

) =
1

2

�
p�f;M

+ 1
�
:

This is because p�f;M
is an upper bound on the probability of A4 outputting f(x0) without any

knowledge of x0. Thus we get Adv
fg

A3
> �4=2 and can set �4 = 2�3.

Proof of Theorem 8: By contradiction. Assume that an adversary A4 can (t4; q4; �4; �4)-break
the semantic security of � with respect to f;M. We construct an adversary A1 that (t1; q1; �1; �1)-
breaks � in the real-or-random sense. Let O1 denote A1's oracle and let O4 denote A4's oracle.

Algorithm A
O1(�)
1

(1) Run A
O4(�)
4

(select) until A4 makes its i-th oracle call, xi. At that point A1 computes yi
O1(xi) and uses yi to answer A4's oracle query. Then resume execution of A4.

(2) Eventually A4 halts, outputting a pair (; s). At that time A1 selects x M by using
the TM(jj)-time sampling algorithm implicitly guaranteed by the statement of the theorem.
Compute y O1(x).

(3) Run A
O4(�)
4

(predict; y; s). When A4 makes its i-th oracle call, xi, compute yi O(xi) and
return yi as the answer to A4's oracle query. Then resume execution of A4.

(4) Eventually A4 halts, outputting a string z. (This is to be A4's \guess" of f(x).) Have A1

compute z0 = f(x) by the Tf (jxj)-time algorithm implicitly guaranteed by the statement of
the theorem. If z = z0 then let A1 output 1 (indicating a guess that O1(�) = Ea(�) for a random
a 2 K); otherwise, let A1 output 0 (indicating a guess that O1(�) = Ea($

j�j) for a random
a K).

To analyze the advantage of A1, let p denote the probability that A4 correctly determines f(x)
when A4 is run by A1 and O1(�) is instantiated by Ea(�) for a random a K. Let q denote the
probability that A4 correctly determines f(x) when A4 is run by A1 and O1(�) is instantiated by
Ea($

j�j) for a random a K. Let �p be the expected value p�f;M
when is selected according to

the following experiment: a K; (; s) A
Ea(�)
4

(select).

Now when O1(�) is taken to be Ea(�) for a random a K adversary A4 (running under A1) is

provided with an accurate view of the game that de�nes AdvsmA1
(f;M) and Pr[a K : A

Ea(�)
1

= 1] =
p. Since A4 has advantage at least �4 in breaking � we also have that p � �p � �4. On the other
hand, when O1(�) = Ea($

j�j) for a random a 2 K adversary A4 is provided with no information
correlated to x, and so q � �p. Thus

�1 � AdvrrA

= Pr[a K : A
Ea(�)
1

= 1]� Pr[a K : A
Ea($

j�j
)

1
= 1]

= p� q

= (p� �p) + (�p� q)

� �4

since, as we have indicated, p � �p � �4 and �p � q � 0. The time complexity of A1 is t1 �

t4 + TM(jj) + Tf (jxj) + c�4, which is at most t4 + TM(m) + Tf (m) + c�4. The number of oracle

22

queries that A1 asks is q4+1, and the total length of these queries is at most �1 = �4+ jxj � �4+m.
The result follows.

B Proofs of Security of the Schemes

This section contains the proof of the results in Section 4.

The following will be useful in various estimates:

Fact 19 For any real number x with 0 � x � 1 we have (1� e�1)x � 1� e�x � x

We use throughout the following notation. If x is a string of length a multiple of L we view it as
a sequence of L bit blocks. We let n = jxjL denote the number of blocks and x[i] denote the i-th
block, so that x = x[1] : : : x[n]. For an integer m let [m] = f1; : : : ;mg.

B.1 The XOR Schemes

Proof of Proposition 10: The proof of this is by construction of an adversary that achieves the
given security parameters. Recall that an adversary in the left-or-right sense makes oracle queries
consisting of pairs of messages, trying to tell whether the left or right half of the pair is being
encrypted. Our adversary E looks for a collision in the inputs to the random function f underlying
the scheme.

Algorithm EO(�;�)

(1) Let n = �=(Lq). (This will be the number of blocks in all queried messages.)

(2) Choose messages N1; : : : ; Nq, all n blocks long, such that Ni[k] 6= Nj [k
0] for all i; j = 1; : : : ; q

and k; k0 = 1; : : : ; n satisfying (i; k) 6= (j; k0). (For example, set Ni[k] to the L-bit binary
encoding of the integer n(i� 1) + k for i = 1; : : : ; q and k = 1; : : : ; n.)

(3) For i = 1; : : : ; q do: (ri; yi[1] : : : yi[n]) O(0
nl; Ni). We call ri the i'th nonce.

(4) If there is some i 6= j that jri�rjj < n (treat ri; rj as integers here!) then determine the values
k; k0 2 f1; : : : ; ng such that ri + k = rj + k0. Output 1 if yi[k] = yj[k

0] and 2 otherwise.

(5) If there is no i 6= j that jri � rjj < n, output a coin ip.

Let OverlapNonce be the event that for some i 6= j we have jri � rj j < n. Whenever this event
occurs we say that there has been an overlap of nonces. We claim that the advantage of E is just
the probability of OverlapNonce. To see this, �rst observe that the probability of this event is the
same in both games as it involves only the random nonce values. Let p be this probability. Let
Prb [E = 1] be the probability that E declares that it is playing game 1 when it is playing game
b 2 f1; 2g. We have

AdvlrE = Pr1 [E = 1]� Pr2 [E = 1] =

�
p � 1 + (1� p) �

1

2

�
�

�
p � 0 + (1� p) �

1

2

�
= p :

Now we want to lower bound p. Let Di be the event that there has not been an overlap of nonces
up to and including the i'th query. We observe that for Di+1 to be true, the nonce of the (i+1)'th
query must not overlap with any of the i nonces of the previous queries. In terms of values that the
(i+ 1)'th nonce can assume, we note that there are at least in values that would cause an overlap
of nonces. (In general there could be as many as i(n � 1) more such values, but we may ignore
them for now since our interest is a lower bound on p.) We therefore have

Pr [Di+1 j Di] �
2l � in

2l
= 1�

in

2l
:

23

The probability of no overlap of nonces at the end of the q'th query can now be computed as follows

Pr[Dq] =
Qq�1
i=1Pr [Di+1 j Di]

�
Qq�1
i=1

�
1�

in

2l

�

�
Qq�1
i=1 e

�in=2l (byFact 19)

= e�nq(q�1)=2
l+1

:

Thus

p = Pr[OverlapNonce] = 1� Pr[Dq] � 1� e�nq(q�1)=2
l+1

= 1� e�(1=2)��(q�1)=(L2
l
) :

We have assumed �q=L � 2l. This means x
def
= �(q� 1)=(L2l) � 1 and we can apply the inequality

1� e�x � (1� e�1)x of Fact 19 to get

p �

�
1�

1

e

�
�
1

2
�
�(q � 1)

L2l
;

which proves the Proposition.

Proof of Lemma 11: Let (M1; N1); : : : ; (Mq; Nq) be the oracle queries of the adversary E, each
consisting, by de�nition, of a pair of equal length messages. These queries are random variables
that depend on the coin tosses of E and responses of the oracle to previous queries. Let ri 2 f0; 1g

l

be the nonce associated to (Mi; Ni) as chosen at random by the oracle, for i = 1; : : : ; q. Let ni
be the number of blocks in the i'th query. In answering the i'th query, the oracle applies the
underlying function f to the ni strings ri + 1; : : : ; ri + ni 2 f0; 1g

l . We call these strings the i'th
sequence, and ri + k is the k-th point in this sequence, k = 1; : : : ; ni.

Let D be the following event, de�ned for either game: ri+k 6= rj+k0 whenever (i; k) 6= (j; k0), for all
i; j = 1; : : : ; q and k = 1; : : : ; ni and k0 = 1; : : : ; nj . That is D is the event that no collision occurs
in the inputs to the random function (or equivalently, that there are no overlapping sequences)
among all of the queries. We also de�ne Pr1 [�] to be the probability of an event in game 1 and
Pr2 [�] of the event in game 2.

Claim 1. Pr1
h
D
i
= Pr2

h
D
i

Proof: The event D for either game depends only on the nonce chosen for each query. The nonces
themselves are chosen randomly and are thus independent of the game being played (or of the
messages given to the oracle). 2

Claim 2. Pr1 [E = 1 j D] = Pr2 [E = 1 j D]

Proof: Given the event D, we have that, in either game, the function f is evaluated at a new point
each time it is invoked, and thus the output is randomly and uniformly distributed over f0; 1gL,
independently of anything else. Thus each cipher block is a message block XORed with a random
value. A consequence of this is that each cipher block has a distribution that is independent of any
previous cipher blocks and of the messages. 2

We now upper bound the advantage of E as follows:

AdvlrE = Pr1 [E = 1]� Pr2 [E = 1]

= Pr1
h
E = 1 j D

i
Pr1

h
D
i
+ Pr1 [E = 1 j D] Pr1 [D]

�Pr2
h
E = 1 j D

i
Pr2

h
D
i
� Pr2 [E = 1 j D] Pr2 [D]

24

Using Claim 1 and Claim 2, we have,

AdvlrE =
�
Pr1

h
E = 1 j D

i
� Pr2

h
E = 1 j D

i�
� Pr1

h
D
i

� Pr1
h
D
i

Given Claim 1 we drop the subscript in talking about the probability of D and write the above
just as Pr[D]. Now we want to upper bound Pr[D]. We observe that the chance of collision at the
time of the choice of the i'th nonce is maximized if all the i � 1 previous queries resulted in i � 1
sequences of inputs to f that were no less than ni � 1 blocks apart. We have a collision if the i'th
sequence begins in a block that is ni � 1 blocks before any other previous sequence j or in a block
position occupied by that sequence j. Now let the probability of the i'th sequence colliding with
any of the previous sequences be pi. We then have, for i > 1

pi �

Pi�1
j=1(nj + ni � 1)

2l
=

(i� 1)(ni � 1) +
Pi�1

j=1 nj

2l
:

Thus

Pr[D] �
qX

i=1

pi �

qX
i=1

�
(i� 1)(ni � 1) +

Pi�1
j=1 nj

�
2l

=
�
L(q � 1)� q(q�1)

2

2l
�

�(q � 1)

L � 2l
:

Putting everything together we have AdvlrE �
�(q�1)

L�2l
.

Proof of Theorem 12: Intuitively, Lemma 11 says the XOR$(R) is secure. If XOR$(F) were not
secure, this would mean F is not good as a PRF function family. Formally we prove the theorem
by a contradiction argument. Assume that an adversary E can (t; q; �; �)-break the XOR$(F)
scheme. We build a distinguisher D that runs in time t0 and makes at most q0 oracle queries but
has AdvrfD(F) > �0, contradicting the assumed security of F as a pseudorandom function family.
Our distinguisher simply runs E and tries to see whether E breaks the encryption scheme. If so,
it bets that f is drawn from F , else it bets that f is drawn from R. In order to run E it simulates
its oracle O(�; �) via queries to its own oracle f by using the latter as the function underlying the
encryption scheme. In more detail:

Algorithm Df

(1) b f1; 2g. (This represents a choice to play either left or right oracle for E.)

(2) Run E, responding to its oracle queries as follows. When E makes an oracle query (M1;M2),
let z E-XOR$f (Mb), and return z to E as the answer to the oracle query. (It is important
here that D can implement the encryption function given an oracle for f .)

(3) Eventually E stops and outputs a guess d (wlog d 2 f1; 2g) to indicate whether it thought its
oracle was the left oracle or the right oracle. If d = b then output 1, else output 0.

In responding to oracle query (M1;M2), distinguisher D makes n oracle queries to f , where n =
jM1j=L = jM2j=L is the number of blocks in the messages. So the total number of oracle queries
made by D is at most �=L, which by assumption is q0. The running time of D is t+c �(�=L) �(l+L)
(oracle queries have unit cost) which by assumption is at most t0.

To compute AdvrfD(F) we �rst need some notation. For G 2 fF;Rg, let Correct(G) be the probability
that E correctly identi�es its oracle when the function underlying the encryption scheme is f G,
and let AdvlrE(G) be the advantage of E, in the left-or-right sense, against encryption scheme
XOR$(G). One can check that Correct(G) = (1=2) � [1 + AdvlrE(G)]. Now note

AdvrfD(F) = Correct(F)� Correct(R) = (1=2) �
h
AdvlrE(F)� AdvlrE(R)

i
:

25

Lemma 11 tells us that AdvlrE(R) � �XOR$, and we have assumed Adv
lr

E(F) > �, so we get AdvrfD(F) >
�=2� �XOR$=2. By the choice of � in the theorem statement, the last quantity is exactly �0, so this
contradicts the assumption that F was (t0; q0; �0)-secure.

Proof of Lemma 13: The proof is similar to that of Lemma 11. The di�erence is in that

Pr1
h
D
i
= Pr2

h
D
i
= 0 for �=L � 2l. This is because the counter will not repeat until 2l blocks

have been encrypted.

Proof of Theorem 14: The proof is similar to that of Theorem 12 and is omitted.

B.2 The CBC Scheme

The central claims are Proposition 15 and Lemma 16. They have much in common. We begin with
a lemma that will be useful in proving both.

Consider an arbitrary adversary E, attacking scheme CBC$(R) (where R = Rl;l) in the left-or-right
sense. It makes up to q queries to its oracle O(�; �), totaling at most � bits. Let (M1;M

0
1
); : : : ;

(Mq;M
0
q) be the oracle queries of the adversary E, each consisting, by de�nition, of a pair of equal

length messages. These queries are random variables that depend on the coin tosses of E and
responses of the oracle to previous queries. Let ni = jMijl = jM

0
i jl be the number of blocks in a

message in the i-th query, i = 1; : : : ; q. Let Ci = Ci[0] : : : Ci[ni] be the random variable which is
the response of the oracle to query (Mi;M

0
i), for i = 1; : : : ; q.

Some notation will be useful. Let T = f (j; k) : j 2 [q] and k 2 [nj] g and T 0 = f (j; k) : j 2

[q] and k = 0; : : : ; nj g and T 00 = f (j; k) : j 2 [q] and k = 0; : : : ; nj + 1 g. We put an order � on
T 00 de�ned as follows:

(j; k) � (j0; k0) if
�Pj�1

i=1 (ni + 2)
�
+ k <

�Pj0�1
i=1 (ni + 2)

�
+ k0 ;

for any (j; k); (j0 ; k0) 2 T 00. We write (j; k) � (j0; k0) if either (j; k) � (j0; k0) or (j; k) = (j0; k0). Of
course, the order inherits to any subset of T 00 and we will most often use it on T or T 0.

We let Prb [�] denote the probability distribution in Game b 2 f1; 2g. (Where Game 1 is the one
where O(�; �) = E-CBC$f (left(�; �)) and Game 2 is the one where O(�; �) = E-CBC$f (right(�; �)), with
f R in both cases.) We assume wlog that the output of E is always a value in f1; 2g. We know
that Cj[k] = Cj [k � 1]�Mj [k] in Game 1 and Cj [k] = Cj[k � 1]�M 0

j[k] in Game 2, for all j 2 [q]
and k 2 [nj]. The following de�nes an event, for either game, that says there are no collisions in
the inputs to f , in either game, upto the indicated point.

De�nition 6 [Event Distinct] In the above setting, with adversary E �xed, de�ne the event Di;u

(called distinct), for i 2 [q] and u 2 [ni], to be true if

Cj [k � 1]�Mj [k] 6= Cj0 [k
0 � 1]�Mj0 [k

0] and Cj[k � 1]�M 0
j[k] 6= Cj0 [k

0 � 1]�M 0
j0 [k

0]

for all (j; k); (j0; k0) 2 T satisfying (j0; k0) � (j; k) � (i; u).

Let D � Dq;nq . Also let D1;0 be an event that is always true and Di;0 � Di�1;ni�1 for i � 2. Finally
let Di;ni+1 � Di;ni for i 2 [q].

It turns out the probability of D tells us pretty much all we want to know about the advantage of
the adversary.

Lemma 20 [Main CBC lemma] Let E be an adversary for CBC$(R) in the setting above. Then

26

(1) Pr1
h
D
i
= Pr2

h
D
i
.

Furthermore, letting p be the (common) value of this probability, we have

(2)
1

2

�
1�

1

e

�
�

�2

l2
�
�

l

!
�
1

2l
� p �

�2

l2
�
�

l

!
�
1

2l
, and

(3) AdvlrE =
�
Pr1

h
E = 1 j D

i
� Pr2

h
E = 1 j D

i�
� p.

We �rst prove our results given the Main CBC lemma and then return to the proof of the lemma.

Proof of Proposition 15: The proof of this is by construction of an adversary that achieves
the given security parameters. Our adversary E looks for a collision in the inputs to the random
function f underlying the scheme.

Algorithm EO(�;�)

(1) Let n = �=(lq). (This will be the number of blocks in all queried messages.) Let T = [q]� [n].

(2) Choose messages M 0
1
; : : : ;M 0

q, all n blocks long, such that M 0
i [k] 6= M 0

j[k
0] for all distinct

(i; k); (j; k0) 2 T . (For example, setM 0
i [k] to the l-bit binary encoding of the integer n(i�1)+k

for all (i; k) 2 T .) Also set Mi[k] = 0l and Mi =Mi[1] : : : Mi[n] for all (i; k) 2 T .

(3) For i = 1; : : : ; q do: (Ci[0]; Ci[1] : : : Ci[n]) O(Mi;M
0
i). We call Ci[0] the i'th initial vector.

(4) If D is true then output a coin ip and halt. Else (meaning D is false) go on with the rest of
the algorithm below.

(5) Let (j; k) 2 T be the least pair for which Dj;k is false. (Meaning if Dj0;k0 is false for some
other pair (j0; k0) 2 T then (j; k) � (j0; k0).)

(6) If there exist (j0; k0) � (j; k) such that Cj[k� 1] = Cj0 [k
0� 1], then set b1 = 1, else set b1 = 0.

(7) If there exist (j0; k0) � (j; k) such that Cj [k � 1] �M 0
j[k] = Cj0 [k

0 � 1] �M 0
j0 [k

0], then set
b2 = 1, else set b2 = 0.

(8) If Cj [k] = Cj0 [k
0] then set a = 1 else set a = 0

(9) If b1 = 1 then: if a = 1 then output 1, else output 2.

(10) Else (meaning b1 = 0) it must be that b2 = 1. In this case if a = 1 then output 2, else output
1.

We claim that

Pr1
h
E = 1 j D

i
� 1� 2�l (1)

Pr2
h
E = 1 j D

i
� (�=l) � 2�l : (2)

Given this, apply Lemma 20 to get

AdvlrE =
�
Pr1

h
E = 1 j D

i
� Pr2

h
E = 1 j D

i�
� p

�

�
1�

1 + �=l

2l

�
�
1

2

�
1�

1

e

�
�

�2

l2
�
�

l

!
�
1

2l
:

Since �=l � 2l=2 by assumption, the Proposition follows. It remains to justify Equations 1 and 2
above.

For the �rst, assume we are playing Game 1 and D has occurred. Then if E returns at Step (9) then
it de�nitely outputs 1. If it executes Step (10) then it outputs 2 only if f(Cj[k�1]) = f(Cj0[k

0�1]),

27

because we are in Game 1 and the messages are all zeros. Since in this case E did not execute
Step (9) we know that Cj [k�1] is not a value on which f has been previously invoked so the chance
that f(Cj[k � 1]) = f(Cj0[k

0 � 1]) is at most 2�l. This gives us Equation (1).

For Equation (2), assume we are playing Game 2 and D has occurred. If E returns at Step (9) then
it outputs 1 only if f(Cj [k� 1]�M

0
j[k]) = f(Cj0[k

0� 1]�M 0
j0[k

0]). We claim the probability of this

is at most (�=l) � 2�l, to be justi�ed below. On the other hand if E executes Step (10) it de�nitely
outputs 2. So Equation (1) is justi�ed up to the remaining claim.

For the remaining claim, we would like to say f has never before been invoked on Cj [k�1]�M
0
j[k],

but this may not be true. Instead we \back up" a bit. If k = 1 then Cj [k� 1] is a randomly chosen
initial vector and hence the probability that f was previously invoked on Cj [k � 1] �M 0

j [k] is at

most [(�=l) � 1] � 2�l, making the chance of a collision at most (�=l) � 2�l in all. So now suppose
k > 1. We know that Cj[k � 1] = f(Cj[k � 2]�M 0

j [k � 1]). We also know that (j; k) was the least
pair such that Dj;k failed. So Cj[k� 2]�M

0
j [k� 1] was di�erent from points on which the function

was already invoked at the time, and hence Cj [k�1] = f(Cj[k�2]�M
0
j [k�1]) again has chance at

most [(�=l)� 1] � 2�l of equaling any value Cj0 [k
0 � 1]�Mj0 [k

0] with (j0; k0) � (j; k). So the chance
of a collision is again at most (�=l) � 2�l.

Proof of Lemma 16: From Lemma 20 (3) we have

AdvlrE =
�
Pr1

h
E = 1 j D

i
� Pr2

h
E = 1 j D

i�
� p

� p :

Now apply the upper bound of Lemma 20 (2).

Proof of Theorem 17: The details of this proof are omitted since it is similar to the proof given
for Theorem 12.

Proof of Lemma 20: For i 2 [q] and u 2 f0; : : : ; nig let Ci;u = (Cj[k] : (j; k) 2 T
0 and (j; k) �

(i; u)) be the sequence of all ciphertext blocks upto and including Ci[u].

Let cj [k] be an l-bit string for j 2 [q] and k 2 f0; : : : ; njg. For i 2 [q] and u 2 f0; : : : ; nig let
ci;u = (cj [k] : (j; k) 2 T 0 and (j; k) � (i; u)) be the sequence of all strings \below" and including
ci[u].

For (i; u) 2 T we de�ne the set Prohi;u(cq;nq), for the �xed set of cipher blocks cq;nq , to consist of
all of the following l bit strings:

(1) cj [k � 1]�Mj [k]�Mi[u] for all (j; k) 2 T such that (j; k) � (i; u)

(2) cj [k � 1]�M 0
j [k]�M 0

i [u] for all (j; k) 2 T such that (j; k) � (i; u)

That is Prohi;u(cq;nq) is the set of values that Ci[u � 1] may take which cause Di;u given that we
had Cj[k] = cj [k] for all (j; k) � (i; u� 1).

We observe from the de�nition of Prohi;u(cq;nq) that

(n1 + � � �+ ni�1 + u� 1) �
��Prohi;u(cq;nq)�� � 2 � (n1 + � � �+ ni�1 + u� 1) : (3)

We note that we have calculated bounds on the cardinality of Prohi;u(cq;nq). In general the size of
the set could be something in between.

Remember that the di�erence between the games is that in Game 1 we have Cj [k] = Cj[k�1]�Mj[k]
and in Game 2 we have Cj[k] = Cj[k � 1] �M 0

j [k], for all j 2 [q] and k 2 [nj]. Our �rst claim is
that the probability distributions conditioned on D are nonetheless equal.

28

Claim 1: Let cq;nq be a �xed sequence of ciphertext blocks as above. Then

Pr1 [Ci;u�1 = ci;u�1 j Di;u] = Pr2 [Ci;u�1 = ci;u�1 j Di;u] (4)

for all i 2 [q] and u 2 [ni + 1].

Proof: By induction. The base case is (i; u) = (1; 1). Here C1;0 = C1[0] is uniformly distributed
since it is the randomly chosen initial vector, so the claim holds.

Now suppose (1; 1) � (i; u). The inductive hypothesis is that

Pr1 [Cj;k�1 = cj;k�1 j Dj;k] = Pr2 [Cj;k�1 = cj;k�1 j Dj;k]

for all (j; k) � (i; u) with j 2 [q] and k 2 [nj].

Let Pr0b [�] = Prb [� j Di;u], for b = 1; 2. We consider two cases.

First suppose u � 2, so that u 2 f2; : : : ; ni + 1g. Then

Pr0b [Ci;u�1 = ci;u�1] = Pr
0

b [Ci[u� 1] = ci[u� 1] j Ci;u�2 = ci;u�2] � Pr
0
b [Ci;u�2 = ci;u�2] : (5)

We take the two terms one by one and show each is independent of b. (The arguments justifying
the claims are slightly di�erent in the cases u � ni and u = ni +1, but the claims are true in both
cases.) Begin with the second. We are conditioning on Di;u. It would make no di�erence, for this
term, to condition on Di;u�1 since the quantities in the probability expression don't involve Ci;u�1

or ci;u�1. That is,

Pr0b [Ci;u�2 = ci;u�2] = Prb [Ci;u�2 = ci;u�2 j Di;u�1] :

Now by the induction hypothesis this term is independent of b.

For the �rst term of the right hand side of Equation (5), observe

Pr
0

b [Ci[u� 1] = ci[u� 1] j Ci;u�2 = ci;u�2] =

(
0 if ci[u� 2] 2 Prohi;u�1(cq;nq)
2�l otherwise.

(6)

We see Equation (6) like this. The �rst case (the probability of 0) is true because we have
conditioned on Di;u which exactly prohibits the event in question. For the second case, note
Ci[u� 1] = f(Ci[u� 2]�Mi[u� 1]) in Game 1 and Ci[u� 1] = f(Ci[u� 2]�M

0
i [u� 1]) in Game 2.

However, both Ci[u� 2]�Mi[u� 1] and Ci[u� 2]�M 0
i [u� 1] are points on which f has not been

invoked before, regardless of which game is being played, if we know that ci[u � 2] is not in the
prohibited set. Thus the probability in question is as claimed and in particular independent of b.
We have thus completed the proof that the quantity in Equation (5) is independent of b.

Now we have to deal with the case u = 1, namely show

Pr1 [Ci;0 = ci;0 j Di;1] = Pr2 [Ci;0 = ci;0 j Di;1] : (7)

We can assume i � 2 since the case (i; u) = (1; 1) was covered in the base case of the induction.
We have

Pr0b [Ci;0 = ci;0] = Pr
0

b

�
Ci[0] = ci[0] j Ci�1;ni�1 = ci�1;ni�1

�
� Pr0b

�
Ci�1;ni�1 = ci�1;ni�1

�
: (8)

The �rst term is 2�l since Ci[0] is the random initial vector. For the second term, we could condition
on Di�1;ni�1+1 rather than Di;1 without changing the outcome. Then we can apply the induction
hypothesis to see that the term in question is independent of b. 2

Claim 2. Pr1 [E = 1 j D] = Pr2 [E = 1 j D].

Proof: This follows from Claim 1. 2

The following is the �rst claim in the statement of Lemma 20.

29

Claim 3. Pr1
h
D
i
= Pr2

h
D
i
.

Proof: We will show by induction that for each (i; u) 2 T we have

Pr1
h
Di;u

i
= Pr2

h
Di;u

i
:

Clearly when (i; u) = (1; 1) both probabilities are one, so suppose (1; 1) � (i; u) 2 T . Assume

inductively that Pr1
h
Dj;k

i
= Pr2

h
Dj;k

i
for all (j; k) � (i; u). For any b = 1; 2,

Prb
h
Di;u

i
= Prb

h
Di;u j Di;u�1

i
� Prb

h
Di;u�1

i
+ Prb

h
Di;u j Di;u�1

i
� Prb [Di;u�1] :

In the �rst term of the sum, the �rst term is 1 and the second term is by induction independent of
b. In the second term of the sum, the second term is by induction independent of b. It remains to
show that

Pr1
h
Di;u j Di;u�1

i
= Pr2

h
Di;u j Di;u�1

i
: (9)

We break the proof of Equation (9) into two cases.

First suppose u � 2. Write

Prb
h
Di;u j Di;u�1

i
=X

ci;u�2

Prb
h
Di;u j Di;u�1 ^Ci;u�2 = ci;u�2

i
� Prb [Ci;u�2 = ci;u�2 j Di;u�1] :

We claim that each term in the sum is independent of b. To see this �x cq;nq and consider the term

Prb
h
Di;u j Di;u�1 ^Ci;u�2 = ci;u�2

i
� Prb [Ci;u�2 = ci;u�2 j Di;u�1] : (10)

The second term of Equation (10) is independent of b by Claim 1. For the �rst term we claim:

Prb
h
Di;u j Di;u�1 ^ Ci;u�2 = ci;u�2

i
=
jProhi;u(cq;nq)j

2l
: (11)

To see Equation (11), note Di;u occurs when Ci[u � 1] falls in the prohibited set. We know that
Ci[u � 1] = f(Ci[u � 2] � Mi[u � 1]) in Game 1 and Ci[u � 1] = f(Ci[u � 2] � M 0

i [u � 1]) in
Game 2. Given that Di;u�1 is true, in either game, f has not previously been invoked on either
Ci[u� 2]�Mi[u� 1] or Ci[u� 2]�M 0

i [u� 1] and thus Ci[u� 1] is uniformly distributed. Thus its
chance of landing in the prohibited set is as claimed. Finally, note that Prohi;u(cq;nq) involves only
ciphertexts in ci;u�2. This means its size is �xed and in particular independent of the Game. We
have thus completed the proof that the quantity in Equation (10) is independent of b.

It remains to show Equation (9) for the case u = 1. We proceed similarly with mainly just a change
in notation. We can assume i � 2 since the case (i; u) = (1; 1) was covered in the base case of the
induction. Write

Prb
h
Di;1 j Di;0

i
=X

ci�1;ni�1

Prb
h
Di;1 j Di;0 ^ Ci�1;ni�1 = ci�1;ni�1

i
� Prb

�
Ci�1;ni�1 = ci�1;ni�1 j Di;0

�
:

Again, take the above sum term by term. Fix cq;nq , thereby �xing one term of the sum. In this
term (itself a product of two terms) �rst consider the second term. We could equally well condition
on Di�1;ni�1+1 without changing the probability. Then, we see the quantity i is independent of b
by Claim 1. For the �rst term, argue analogously to the above in terms of the prohibited set. Note
that Ci[u�1] is random (being the initial vector) and the prohibited set, and thus its size, depends

30

only on quantities that we have �xed via the conditioning. Thus this term is also independent of
b. This completes the proof of Claim 3. 2

We now let p
def
= Pr1

h
D
i
= Pr2

h
D
i
. The following is the upper bound of the second claim in the

statement of Lemma 20.

Claim 4. p �

�2

l2
�
�

l

!
�
1

2l
.

Proof: Standard conditioning and bounding says that

Pr1
h
D
i
�

qX
i=1

niX
u=1

Pr1
h
Di;u j Di;u�1

i
:

A collision occurs when Ci[u�1] falls in Prohi;u(�). Now we can apply Equation (3) to upper bound
the above by

qX
i=1

niX
u=1

2(n1 + : : :+ ni�1 + u� 1)

2l
=

2

2l

qX
i=1

�
ni(n1 + : : :+ ni�1) +

(ni � 1)ni
2

�

=
1

2l

"
�2

l2
�
�

l

#
:

This completes the proof of Claim 4. 2

The following is the lower bound of the second claim in the statement of Lemma 20.

Claim 5: p �
1

2

�
1�

1

e

�
�
1

2l

�2

l2
�
�

l

!
.

Proof: We upper bound the complementary event using Equation (3):

Pr1 [D] =
qY

i=1

niY
u=1

Pr1 [Di;u j Di;u�1]

�

qY
i=1

niY
u=1

2l � (n1 + : : :+ ni�1 + u� 1)

2l

=
qY

i=1

niY
u=1

�
1�

n1 + : : :+ ni�1 + u� 1

2l

�
:

Using the inequality 1� x � e�x of Fact 19 we can upper bound the above by e�M where

M =
qX

i=1

niX
u=1

n1 + : : :+ ni�1 + u� 1

2l
=

1

2

1

2l

"
�2

l2
�
�

l

#
:

But p � 1� e�M . Now apply the inequality 1� e�M � (1� e�1)M of Fact 19 to get

p �
1

2

�
1�

1

e

�
�
1

2l

"
�2

l2
�
�

l

#
:

This completes the proof of Claim 5. 2

The following is the third claim in the statement of Lemma 20.

Claim 6: AdvlrE =
�
Pr1

h
E = 1 j D

i
� Pr2

h
E = 1 j D

i�
� p.

31

Proof: By conditioning we have

AdvlrE = Pr1 [A = 1]� Pr2 [A = 1]

= Pr1
h
A = 1 j Dq;nq

i
Pr1

h
Dq;nq

i
+ Pr1

�
A = 1 j Dq;nq

�
Pr1

�
Dq;nq

�
�Pr2

h
A = 1 j Dq;nq

i
Pr2

h
Dq;nq

i
� Pr2

�
A = 1 j Dq;nq

�
Pr2

�
Dq;nq

�
:

The proof of Claim 6 is concluded by applying Claims 2 and 3. 2

This concludes the proof of Lemma 20.

Proof of Proposition 18: The idea is that it su�ces to �nd collisions in the initial vectors
(nonces). The details follow.

The adversary sets q = �=l. It sets Mi = 0l for i = 1; : : : ; q and chooses N1; : : : ; Nq to be distinct,
non-zero l-bit strings. It makes q queries, consisting of the pairs of messages (M1;M

0
1
); : : : ; (Mq;M

0
q).

Let Ci[0]Ci[1] denote the response to the i-th query. If C1[0]; : : : ; Cq[0] are all distinct the adver-
sary ips a coin to determine its output. Else, let i 6= j be such that Ci[0] = Cj[0]. The adversary
outputs 1 if Ci[1] = Cj[1] and 2 otherwise. One can show that the advantage is exactly the chance
that there is a collision in the initial vectors.

Note this attack works just as well for functions as for permutations. It is just that for functions
we could prove something stronger, namely that an attack could be mounted for any given value
of q.

32

